
J Glob Optim (2008) 42:327–345
DOI 10.1007/s10898-008-9317-7

A scaling algorithm for polynomial constraint satisfaction
problems

Ferenc Domes · Arnold Neumaier

Received: 11 March 2008 / Accepted: 13 March 2008 / Published online: 9 July 2008
© Springer Science+Business Media, LLC. 2008

Abstract Good scaling is an essential requirement for the good behavior of many numerical
algorithms. In particular, for problems involving multivariate polynomials, a change of scale
in one or more variable may have drastic effects on the robustness of subsequent calculations.
This paper surveys scaling algorithms for systems of polynomials from the literature, and
discusses some new ones, applicable to arbitrary polynomial constraint satisfaction problems.

Keywords Scaling algorithms · Constraint satisfaction problems · Optimization

1 Introduction

Good scaling is an essential requirement for the robust behavior of methods to solve sparse
linear systems, to find one or all zeros of nonlinear systems, to solve optimization problems,
and to find one or all solutions of constraint satisfaction problems. While the literature is
dominated by work on scaling linear systems, we got interested in scaling nonlinear systems
to improve the performance of our (currently still experimental) GloptLab system [4,5] for
the solution of constraint satisfaction problems.

For problems involving multivariate polynomials, a change of scale in one or more var-
iable may have drastic effects on the robustness of subsequent calculations. Therefore, it is
important to have strategies for scaling polynomial systems. A few such scaling algorithms
were discussed in the literature on polynomial system solving. In [21], a scaling algorithm,
minimizing the sum of squares of the exponents of the coefficients is given. In [14, Chap. 5],
a slightly improved scaling algorithm is presented. (These methods are presented below in
Sect. 3 and further discussed in Sect. 5.)

Unfortunately, these algorithms behave poorly on badly scaled linear problems. On the
other hand, a good nonlinear scaling algorithm should of course also perform well when
applied to linear problems. The linear scaling problem has received a lot of attention in the

F. Domes (B) · A. Neumaier
Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Vienna, Austria
e-mail: ferenc.domes@univie.ac.at

123

328 J Glob Optim (2008) 42:327–345

literature. Important old works on linear scaling are by Curtis and Reid [3] and Parlett and
Landis [16].

In [15], a new pivoting strategy for Gaussian elimination was introduced. The idea was
to precondition the coefficient matrix of a linear system, so as to obtain an equivalent scaled
system with a matrix which is close to being diagonally dominant and hence well-scaled. The
preconditioning is based on solving a linear program via a matching algorithm. It increases
the accuracy of the solution and reduces the need for partial pivoting, thereby speeding up
the solution process.

Theory and algorithms of the scaling algorithm in [15] were extended and adapted for pre-
conditioning large sparse unsymmetric linear systems by Duff and Koster [7], with important
applications in semiconductor device and circuit simulations [19]. A thorough experimental
study of the benefits of such scaling-based preconditioning was given in [1]. Symmetrized
maximum weight matchings related to optimal scaling algorithms are used in [18] and [9]
for solving highly indefinite, unsymmetric linear systems; there the reordering and scaling is
used as a preconditioner for incomplete LDLT factorizations. As one can see there is a great
interest and numerous applications for preprocessing techniques based on optimal scaling
and associated matching algorithms.

When leaving the linear case, new considerations have to be made since the nonlinear
entries should be weighted differently than the linear ones. In the present paper, a new princi-
ple for nonlinear scaling algorithms is presented which reduces in the linear case to the linear
programming approach of [15]; thus we hope to gain the same benefits for polynomial prob-
lems. The problem class treated is that of polynomial constraint satisfaction problems. This
includes systems of polynomial equations; but there may be fewer or more constraints than
variables. The technique extends without problems to the scaling of polynomial optimization
problems. Indeed, we can always treat an objective function as an additional constraint with
an artificial upper bound. A derivation of two new algorithms based on the new principle is
given in Sect. 4. All algorithms discussed are applied to a number of examples in Sect. 5 and
compared with each other.

The new scaling algorithms are used as part of the global optimization environment
GloptLab (see [4,5]).

In the context of polynomial systems, Kim and Kojima [12] also discuss scaling techniques.
However, these concern the improvement of the numerical stability of auxiliary linear sys-
tems by scaling the latter, rather than scaling the coefficients of the polynomials. There are
also strategies for scaling nonlinear eigenvalue problems can be found in [8], [10] and [11].
Again, these have a different nature; they exploit the scaling freedom in reducing polynomial
eigenvalue problems to larger linear ones.

2 Problem specification

2.1 Notation

We shall use the following notation. N0 denotes the set of natural numbers including zero,
and R+ the set of nonnegative reals. Inequalities on vectors are interpreted componentwise.
The j th row of a matrix A is denoted by Aj :, and the kth column by A:k . IR

d denotes the
d-dimensional space of interval vectors. An interval vector x ∈ IR

d is a Cartesian product
of closed real intervals, representing a (bounded or unbounded) axiparallel box in R

d . Thus
each component xi of x is a real closed interval, with

123

J Glob Optim (2008) 42:327–345 329

xi := [xi , xi].
The values −∞ and ∞ are allowed as lower and upper bounds, respectively, to take care of
one-sided bounds on variables.

We consider constraint satisfaction problems with general constraints C(x) ∈ F and bound
constraints x ∈ x. The m general constraint are interpreted as componentwise enclosures
Ci (x)∈ Fi (i = 1 . . . m). This includes equality constraints if Fi = [Fi , Fi] is a degenerate
interval, and inequality constraints if one of the bounds is infinite. Fi ≤ Ci ≤ Fi if both
bounds are finite and Ci = Fi if the bounds are equal. Similarly, the n bound constraints
are interpreted as enclosures x j ∈ x j with j = 1 . . . n. Again, fixed variables and one-sided
bounds on the variables are included as special cases.

mid(x) := (x + x)/2

denotes the midpoint of a box x,

〈x〉 := min
i

(|xi |, |xi |)
denotes the magnitude and

|x| := max
i

(|xi |, |xi |)
denotes the magnitude of an interval vector x.

In this paper, all constraints are defined by polynomial expressions in standard form as a
linear combination of monomials. All monomials occurring in some general constraints are
collected together in a vector-valued function q(x) : R

n → R
p with components

q(x)k =
n∏

j=1

x
Ekj
j for k = 1 . . . p.

Here E ∈ N
p×n
0 is a sparse matrix encoding the powers with which the variables appear in the

monomials used. The corresponding polynomial coefficients are collected in a sparse matrix
A ∈ R

m×p . Thus the general polynomial constraint satisfaction problem with n variables
and m constraints takes the form

x ∈ x, Aq(x) ∈ F (1)

with q(x) as above, A ∈ R
m×p , x ∈ IR

n , and F ∈ IR
m .

The polynomial scaling problem now consists in finding a constraint scaling vector r ∈ R
m+

and a variable scaling vector c ∈ R
n+ such that the scaled problem

x ∈ x, Asq(x) ∈ Fs with As
ik := ri |Aik |q(c)k, Fs

i := ri Fi (2)

is well-scaled in an appropriate sense. Which properties constitute a well-scaled problem
is a somewhat ill-defined matter, because it highly depends on the applications and is not
easily quantifiable. Intuitively, a scaling algorithm should somehow decrease large variations
between appropriately weighted sums of logarithms of the coefficients of the matrix A; the
weights should reflect the expected size of the values of the monomials.

Different intuitions about well-scaledness result in different algorithms for the construc-
tion of the scaling vectors. This also makes it difficult to compare scaling algorithms. The
ultimate criterion of quality is defined by the behavior of the application that uses a scaling
algorithms, and thus cannot be evaluated independently of the application. Therefore it is
advisable to have different algorithmic choices that enable users to choose the one most
suited to their case.

123

330 J Glob Optim (2008) 42:327–345

3 Known methods

This section presents the two methods found in the literature, converted to the problem format
and notation given in the previous section and discusses some of their weaknesses.

3.1 Watson’s Hompack algorithm

On page 20 of [21], an algorithm is given for scaling polynomial systems F(x) = 0, where

Fi (x) =
n j∑

j=1

pi j

n∏

k=1

x
di jk
k , i = 1, . . . , m.

(In [21], m = n but their recipe trivially extends to the case n �= m.) To find the constraint
scaling vector c = 10e and the variable scaling vector r = 10v (with componentwise powers),
they minimize the scaling function

S(e, v) = 1

2

m∑

i=1

n j∑

j=1

[
ei + log10 |pi j | +

n∑

k=1

vkdi jk

]2

(3)

by finding the solution of ∇S = 0. In our problem representation (1), this amounts to find
the minimum of

S(e, v) = 1

2

∑

(i, j)∈ I

[
ei + Li j + (Ev) j

]2

with Li j := log10 |Ai j | and I = {(i, j) | Ai j �= 0}. The index sets Ii with ni := |Ii | are
introduced because of the remark in [21] that all coefficients pi j = 0 should be omitted from
the calculations. The stationarity condition ∇S = 0 results in an equation similar to [21, p.
20]:

Gw = b (4)

with w =
(

e
v

)
and

Gll = nl , Gl,m+s =
∑

(l, j)∈I

E js, Gm+s,l =
∑

(l, j)∈I

E js, Gm+s,m+t =
∑

(:, j)∈I

E jt E js

bl =
∑

(l, j)∈I

Ll j , bn+s =
∑

(i, j)∈ I

Li j E js,

where l = 1 . . . m, s = 1 . . . n, t = 1 . . . n. Finally the scaling vectors are found by computing
c = 10e and r = 10v .

Remark As shown in Sect. 5 the algorithm frequently fails when the matrix E has a regular
structure: The matrix G is singular whenever for any m < k �= t the equation

∑

(:, j)∈I

E jk =
∑

(:, j)∈I

E jt

123

J Glob Optim (2008) 42:327–345 331

holds for all (i, j) ∈ I . For example, in the 4-dimensional linear problem where E is the
4 × 4 identity matrix, the matrix

G =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 0 0 0 1 1 1 1
0 4 0 0 1 1 1 1
0 0 4 0 1 1 1 1
0 0 0 4 1 1 1 1
1 1 1 1 4 4 4 4
1 1 1 1 4 4 4 4
1 1 1 1 4 4 4 4
1 1 1 1 4 4 4 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is singular.

3.2 Morgan’s algorithm

The book [14] presents in Chap. 5 (pp. 107–119) two scaling algorithms for polynomial
systems of equations. The first algorithm is called SCLGEN and is very similar to the one
presented in the previous subsection. The second algorithm, called SCLCEN, is a modified
version of SCLGEN, and takes the values of the bound constraints into account.

Though Morgan uses a slightly different notation, SCLGEN is a straightforward exten-
sion of the method used in Hompack. Indeed, using the same notation as in Subsect. 3.1, the
objective function

S(e, v) =
m∑

i=1

n j∑

j=1

[
ei + log10 |pi j | +

n∑

k=1

vkdi jk

]2 + r2 (5)

is nearly the same as (3), with an additional term

r2 :=
m∑

i=1

∑

1 ≤ j ′< j ′′ ≤ ni

[(
ei + log10 |pi j ′ | +

n∑

k=1

vkdi j ′k

)

−
(

ei + log10 |pi j ′′ | +
n∑

k=1

vkdi j ′′k

)]2

,

penalizing the variation in magnitude between the coefficients of Fi . The suggested solution
method, solving the equation ∇S = 0, is also the same. For our problem representation (1),
the method amounts to finding the minimum of

S(e, v) =
∑

(i, j)∈ I

[
ei + Li j + (Ev) j

]2

+
∑

(i, j ′),(i, j ′′)∈ I
j ′ < j ′′

[
Li j ′ − Li j ′′ + (Ev) j ′ − (Ev) j ′′

]2
, (6)

with Li j := log10 |Ai j |. This can be written as a linear least squares system, whose solution
gives the scaling vectors c = 10e and r = 10v . Solving ∇S = 0 just means solving the
normal equations, but other, more stable methods for solving the least squares problem can
be used.

123

332 J Glob Optim (2008) 42:327–345

Note that solving the least squares problem

min ‖Gx − b‖, G ∈ R
m(p+s)×nm, x ∈ R

nm, b ∈ R
m(p+s), s :=

(
p
2

)
(7)

could prove difficult because of the dimension of G, if the number p of the monomials is
high. However this problem is reduced by the following factors:

• The matrix G is usually sparse. The dimension given in (7) is the worst case, attained
only when Gi j �= 0 for all i and j .

• In the normal equations Cx = GT b, the matrix C = GT G is only nm × nm.

Morgan’s second scaling algorithm SCLCEN is a modified version of SCLGEN, which
uses the upper bound or the mean values of the box x to define the variable scaling. Let us
denote the selected bound information as x̂ then SCLCEN defines

vk := log10 |x̂ | for k = 1, . . . n,

(actually, Morgan does not use the absolute value, which unduly restricts the applicability of
his method to variables which can take positive values) and replaces the second term r2 of
(5) with

r2 :=
∑

1 ≤ i ′ ≤ i ′′ ≤ m

∑

1 ≤ j ′ ≤ ni ′
1 ≤ j ′′ ≤ ni ′′

j ′ ≤ j ′′

[
ei ′ − ei ′′ + log10

|pi ′ j ′ |
|pi ′′ j ′′ | +

n∑

k=1

vk(di ′ j ′k − di ′′ j ′′k)

]2

.

The new equation now depends only on the variable vector e since v is constant. Written in
our notation, the complete objective function takes the form

S(e) :=
∑

(i, j)∈ I

[
ei + Li j + (Ev) j

]2

+
∑

(i ′, j ′),(i ′, j ′′)∈I
i ′ ≤ i ′′, j ′ ≤ j ′′

[
ei ′ − ei ′′ + Li ′ j ′ − Li ′′ j ′′ + (Ev) j ′ − (Ev) j ′′

]2
.

The least squares problem for minimizing S(e) now involves fewer variables (only e) but
many more terms. However this method only computes the scaling factors for the constraints.
The variable scaling is determined by the mean value of the bound constraints. This could
prove bad if some of the variables are unbounded or the bounding intervals are very wide.
The second problem is that vk := log10 x̂ is not defined if x̂ = 0, thus the algorithm does not
work for the very common constraint xi ≥ 0. Because of these problems, SCLGEN is not
tested in this paper.

4 The new methods

We now discuss new methods which give a good scaling for both linear and nonlinear systems.
We search for a constraint scaling vector r ∈ R

m+ and a variable scaling vector c ∈ R
n+

such that the scaled matrix should have all entries bounded in absolute value by 1, with at
least one 1 in each row not consisting of zeros only. In particular, the inequality

ri |Aik |q(c)k ≤ 1 (8)

holds and

123

J Glob Optim (2008) 42:327–345 333

ri = 1

maxk |Aik |q(c)k

if the denominator is nonzero. Since scaling is intended to fix magnitudes only, we can relax
this requirement by allowing the largest entries to be O(1) instead of 1 and to choose the
scaling factors as powers of a fixed, but arbitrary integer b > 1. To minimize rounding errors,
b should be a power of the basis in which the arithmetic is executed. In terms of this basis,
we define

ui := logb ri , v j := logb c j

and

Bik := − logb |Aik |,
and substitute them into (8) we obtain

bui b−Bik

n∏

j=1

bv j Ek j ≤ b0,

resulting in the inequality

ui +
n∑

j=1

v j Ek j = ui + (Ev)k ≤ Bik . (9)

We define the index set I := {(i, k) | Bik is finite} then by (9)

∑

(i,k)∈I

(ui + (Ev)k)≤
∑

(i,k)∈I

Bik ≤ ∞ (10)

holds. Let di be the number of (i, :) ∈ I and qk the number of (:, k) ∈ I , then by transforming
the left hand side of (10) we obtain

m∑

i=1

di ui +
p∑

k=1

qk(Ev)k = dT u + qT Ev < ∞. (11)

If (8) holds, we may regard the expression

f (r, c) := dT u + qT Ev = dT logb r + qT E logb c (12)

as a measure of the quality of the scaling, in the sense that different scalings may be consid-
ered equivalent if the values of f (r, c) are the same, and better scalings have higher values
of f (r, c). Therefore, we may take (12) as the objective function of an optimization problem
with the conditions (9) (equivalent to (8)) as the constraints. This gives the linear program

max dT u + qT Ev

s.t. ui + (Ev)k ≤ Bik for all i, k,
(13)

with an obviously finite maximum.
To obtain a reasonable bounding box v and a good starting value v0 for the variable scaling

factors in our algorithms, we define the following constants. (Here the function ‘round’ rounds

123

334 J Glob Optim (2008) 42:327–345

to the nearest integers as in Matlab, i.e., rounding in case of ambiguity to the absolutely
larger integer.)

b base, b > 0
eps machine precision
εi := eps∗ min(1, 1/ max(〈x〉), min(|x|)) minimal scaling factor
u j := max(

〈
x j

〉
, ε) additive scaling factor for x j

r j := 1/ min(|x j |, ε−1) multiplicative scaling factor for x j

v j := [round(logb u j), round(− logb r j)] v j range interval
v0

j := round(v j − v j) initial value for r j .

(14)

4.1 A linear programming algorithm

Adding the bounds on the vector v defined in (14) to the linear optimization problem (13)
gives the linear program

max f (u, v) := dT u + qT Ev

s.t. ui + (Ev)k ≤ Bik for all i, k,

v ∈ v.

(15)

The linear optimization problem (15) can be solved using a linear programming package
such as lpSolve [2]. The linear program has m +n variables and k +q inequality constraints,
where k is the number of finite, non-zero entries of the matrix B (maximum mp) and q is
the number of finite bounds in v. Solving the linear program successfully results in a scaling
vector y = (u, v)T . The variable scaling vector c can be obtained by computing c j = bv j for
j = 1 . . . n and the constraint scaling vector r from y by computing ri = bui for i = 1 . . . m.

The optimization problem (15) may have an infinite number of maximizer. In this case it
is desirable that that the components of the maximizer are reasonably small. To achieve this,
we introduce an additional postprocessing step, which solves another linear program. Let
ŷ = (û, v̂) the solution of the the linear program (15). The postprocessing linear program

min ŷT y
s.t. ui + (Ev)k ≤ Bik for all i, k,

f (u, v) ≥ f (û, v̂)

y ∈ y,

(16)

where y = (u, v) and

yi =
⎧
⎨

⎩

[0, 0] if ŷi = 0
[−∞, 0] if ŷi < 0
[0,∞] if ŷi > 0.

.

yields a solution of (15) whose entries are usually small enough to be acceptable.

4.2 An iterative algorithm

If the number of nonzero entries of A is large or if we have to scale a large number of matrices,
an iterative scaling method for approximately solving the linear optimization problem (13)
may be preferable.

Since it follows from (9) that u ≤ u(v), where

ui (v) := min
k

Cik with Cik := Bik − (Ev)k,

123

J Glob Optim (2008) 42:327–345 335

the objective in (13) is maximal for u = u(v). Therefore to solve (13), we have to maximize
the scaling function

f (v) = dT u(v) + qT Ev.

If we change the j th component of v by setting

v̂ := v + δ I: j , (17)

the change of the scaling function is given by

� := f (v̂) − f (v) = dT (u(v̂) − u(v)) + δqT E: j . (18)

with

u(v̂) := u(v + δ I: j) = min
k

(Cik − δEkj). (19)

Algorithm 4.1 First we initialize the n-dimensional vectors u, r , v0 and v as in (14). We set
δ := −1, v := v0 and compute

e := qT E, Cik := Bik − (Ev)k, mi := min
k

Cik .

We iterate through the components of the vector v, while variable t counts the number of
unchanged components of v since the last change on v has been made. For the component
v j , j ∈ {1, . . . , n} we proceed as follows:

1. If t > n terminate the iteration procedure.
2. If v j + δ ∈ v j

(a) We set v̂ := v + δ I: j .
(b) We compute Ĉik := Cik −δEkj and m̂i = mink Ĉik for i = 1 . . . n and k = 1 . . . p.

By (18) and (19) we have � = dT (m̂ − m) + δe j .
(c) If � > 0 we accept v̂ and set v = v̂, C = Ĉ , m = m̂ and t = 0, then begin Step 2.

anew for the same component of v.
(d) If �≤ 0 we set δ = −δ and

(i) if δ ≥ 0 we begin the process again for the same j th component of v.
(ii) if δ < 0 we set t = t + 1 and step to the (j + 1)th component of v.

3. If δ<0 we change the sign of δ and begin the process again for the same component of v.
4. If δ ≥ 0 we change the sign of δ, increase t by one, and continue with the first step,

using the (j + 1)th component of v.

After the termination of the above iteration we have a vector v from which the variable scaling
vector c can be obtained by computing

c j = bv j , j = 1 . . . n,

and the constraint scaling vector r can be obtained by computing

ri = bu(v)i , i = 1 . . . m.

Theorem 4.2 Algorithm4.1 ends after finitely many steps.

Proof Since we accept a new v only if � = f (v̂) − f (v)> 0, implying that f (v̂)> f (v),
the scaling function either increases, or it does not change in case we do not accept the new
v = v̂.

123

336 J Glob Optim (2008) 42:327–345

Since v ∈ v is bounded, v̂ j = v j ± δ and the constant δ does not change, v can only attain
a finite number of values. The termination criterion t > n in the algorithm guarantees that if
the value f (v) of the scaling function not change in the last n steps the algorithm terminates.

Putting all this together shows that f (v) increases monotonically, stays constant at most
n times in a row, and takes only finitely many distinct values. Therefore the algorithm carries
out a finite number of steps, and there is no possibility of cycling. This shows that the scaling
algorithm is finite.
�

Using the algorithm results in a scaled version As of the matrix A with

As
ik := ri |Aik |q(c)k .

Since (u, v) is an approximate solution of the optimization problem (13) with integral entries,
we have As

ik ≤ 1 for i = 1 . . . n and k = 1 . . . m, and, since u = u(v), for each i there is at
least one index k such that As

ik > b−1. Thus the matrix will be well-scaled if b is not large.
In practice, it is reasonable to remove the variables xk where xk is narrow before the com-

putation of the scaling. We proceed as follows. Let K be the list of indices k with vk = vk

(which defines the meaning of xk being narrow) in increasing order. For indices in K , vk

is determined by the bounds, and can therefore be eliminated from the problem. Thus the
problem (1) changes into

x̂ ∈ x̂, Âq(x̂) ∈ F, (20)

with x̂ = (x j) j /∈ K , Âi j = (x
Ekj
k Ai j). After that we remove all constant monomials (x0

k for
all k) from q (̂x) by bringing them to the left hand side by substituting them from F obtaining
F̂ and changing q to q̂. Finally we remove the constraints where all the coefficients are zero,
thereby possibly changing the dimension of Â and F̂ . Doing the above reduces the compu-
tation time. Let v0 be the starting value vector for v as in (14) and let v̂ be the solution vector
computed by scaling the reduced system (20). The the solution vector of the original system
can be written as

vk =
{

v0
i(k) for k ∈ K ,

v̂ j (k) for k /∈ K ,

where i(k) denotes the position of k in the list K , j (k) denotes the position of k in the
increasingly sorted list complementary to K . Then the variable scaling vector is c = bv and
the constraint scaling vector is r = bu(v).

5 Numerical examples

We illustrate the preceding algorithms with as number of examples. In the following, we
refer to the algorithms presented in Subsects. 3.1, 3.2, 4.1, and 4.2 by the names Hompack,
Morgan, ScaleLP, and ScaleIt, respectively.

The examples are chosen to illustrate different features; first a badly scaled nonlinear
system from the literature, followed by a reduced version of the same system; then a badly
scaled linear system from the literature; finally a randomly generated quadratic system and
a nearly degenerate problem are presented. The basis b = 10 is used in all calculations.

For the purpose of better understanding the examples below, instead a matrix A, we define
the exponent matrix of the problem (1) by

ex(A) :=
(

q(x)T

log10(A)

)
,

123

J Glob Optim (2008) 42:327–345 337

and will usually give ex(A) in place of A. The entries of ex(A) with value −∞ are indicated
by an ∗.

5.1 A badly scaled system from the literature

A real word example from the paper [13] a chemical combustion system is presented in [20].
In [20] it is advised to apply a scaling algorithm to

x2 + 2x6 + x9 + 2x10 − 10−5 = 0,

x3 + x8 − 3.0 × 10−5 = 0,

x1 + x3 + 2x5 + 2x8 + x9 + x10 − 5.0 × 10−5 = 0,

x4 + 2x7 − 10−5 = 0,

0.5140437 × 10−7 x5 − x2
1 = 0,

0.1006932 × 10−6 x6 − x2
2 = 0,

0.7816278 × 10−15 x7 − x2
4 = 0,

0.1496236 × 10−6 x8 − x1x3 = 0,

0.6194411 × 10−7 x9 − x1x2 = 0,

0.2089296 × 10−14 x10 − x1x2
2 = 0

(21)

before solving it. Writing (21) in the form (1) results in the exponent matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 1 x2
1 x2

2 x2
4 x1x3 x1x2 x1x2

3∗ 0 ∗ ∗ ∗ 0.3 ∗ ∗ 0 0.3 −5 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 ∗ ∗ ∗ ∗ 0 ∗ ∗ −4.5 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ 0 ∗ 0.3 ∗ ∗ 0.3 0 0 −4.3 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 ∗ ∗ 0.3 ∗ ∗ ∗ −5 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ −7.3 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ −7 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ −15 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ −6.8 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −7.2 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −15 ∗ ∗ ∗ ∗ ∗ ∗ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

without bounds on the variables and with Fi = [0, 0] for all i = 1, . . . , m.
For this example, Meintjes and Morgan [13] suggest to scale using Hompack, and indeed

both Hompack and Morgan perform well. Our methods give similar results and the entries
are especially small in the quadratic and in the bilinear part of the scaled exponent matrix,
a property we would except after the application of a good scaling. We show the results for
Hompack and ScaleIt:

The scaling problem solved with the method Hompack using the gradient equation (Sub-
sect. 3.1) results in the scaling factors

loga(xs)
T := (−4.6 − 1.5 6.9 − 13 1.8 − 3.9 10 − 9.1 − 1.1 5.5),

loga(cs)
T := (1.1 2.3 0.62 2.3 7.3 7 15 6.8 7.2 5.1e−),

123

338 J Glob Optim (2008) 42:327–345

and the scaled exponent matrix
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 1 x2
1 x2

2 x2
4 x1x3 x1x2 x1x2

3
∗ −0.43 ∗ ∗ ∗ −2.5 ∗ ∗ −0.018 6.9 −3.9 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 9.1 ∗ ∗ ∗ ∗ −6.9 ∗ ∗ −2.3 ∗ ∗ ∗ ∗ ∗ ∗
−3.9 ∗ 7.5 ∗ 2.8 ∗ ∗ −8.2 −0.5 6.1 −3.7 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ −10 ∗ ∗ 13 ∗ ∗ ∗ −2.7 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 1.8 ∗ ∗ ∗ ∗ ∗ ∗ −1.8 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ −3.9 ∗ ∗ ∗ ∗ ∗ ∗ 3.9 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 10 ∗ ∗ ∗ ∗ ∗ ∗ −10 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ −9.1 ∗ ∗ ∗ ∗ ∗ ∗ 9.1 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1.1 ∗ ∗ ∗ ∗ ∗ ∗ 1.1 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −9.2 ∗ ∗ ∗ ∗ ∗ ∗ 9.2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The scaling problem solved with the method ScaleIt (Subsect. 4.2) results in the scaling
factors

loga(xs)
T := (−4 − 3 − 3 − 7 0 0 0 0 0 0),

loga(cs)
T := (−0.3 0 − 0.3 − 0.3 7.3 6 14 6.8 7 10),

and the scaled exponent matrix
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 1 x2
1 x2

2 x2
4 x1x3 x1x2 x1x2

3∗ −3.3 ∗ ∗ ∗ 0 ∗ ∗ −0.3 0 −5.3 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ −3 ∗ ∗ ∗ ∗ 0 ∗ ∗ −4.5 ∗ ∗ ∗ ∗ ∗ ∗

−4.3 ∗ −3.3 ∗ 0 ∗ ∗ 0 −0.3 −0.3 −4.6 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ −7.3 ∗ ∗ 0 ∗ ∗ ∗ −5.3 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ −0.71 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ −1 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ −1.1 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ −0.18 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −0.21 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −4.7 ∗ ∗ ∗ ∗ ∗ ∗ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5.2 Reduced version of the same system

By removing the obvious slack variables from the system (21) and setting b = 10 we obtain
the simplified example

x2 + 0.2013864 × 106x2
2 + 0.6194411 × 107x1x2 + 0.4178592 × 1014x1x2

2 − 10−5 = 0,

x3 + 0.1496236 × 106x1x3 − 3.0 × 10−5 = 0,

x1 + x3 + 0.1028087 × 108x2
1 + 0.2992472 × 106x1x3

+ 0.6194411 × 107x1x2 + 0.2089296 × 1014x1x2
2 − 5.0 × 10−5 = 0,

x4 + 0.1238882 × 108x1x2 − 10−5 = 0.

(22)

In this case the number of constraints is reduced to 5 and the number of variables to 4. Writing
(21) in the form (1) again results in the exponent matrix

⎛

⎜⎜⎜⎜⎝

x1 x2 x3 x4 1 x2
1 x2

2 x2
4 x1x3 x1x2 x1x2

3∗ 0 ∗ ∗ −5 ∗ 7.3 ∗ ∗ 7.21 15
∗ ∗ 0 ∗ −4.52 ∗ ∗ ∗ 6.82 ∗ ∗
0 ∗ 0 ∗ −4.3 7.59 ∗ ∗ 7.13 7.21 14.7
∗ ∗ ∗ 0 −5 ∗ ∗ 15.4 ∗ ∗ ∗

⎞

⎟⎟⎟⎟⎠
.

123

J Glob Optim (2008) 42:327–345 339

The scaling problem solved with the method Hompack using the gradient equation (Sub-
sect. 3.1) results in the scaling factors

loga(xs)
T := (0.49 1.12 0.33 − 3.47),

loga(cs)
T := (−6.12 − 1.15 − 5.38 − 5.79e − 016),

and the scaled exponent matrix
⎛

⎜⎜⎜⎜⎝

x1 x2 x3 x4 1 x2
1 x2

2 x2
4 x1x3 x1x2 x1x2

3∗ −5 ∗ ∗ −11.1 ∗ 3.42 ∗ ∗ 2.7 10
∗ ∗ −0.821 ∗ −5.67 ∗ ∗ ∗ 6.49 ∗ ∗

−4.89 ∗ −5.05 ∗ −9.68 3.19 ∗ ∗ 2.56 3.43 10.4
∗ ∗ ∗ −3.47 −5 ∗ ∗ 8.47 ∗ ∗ ∗

⎞

⎟⎟⎟⎟⎠
.

The scaling problem solved with the method Morgan (Subsect. 3.2) results in the scaling
factors

loga(xs)
T := (−6.48 − 6.05 − 6.57 − 10.2)

loga(cs)
T := (5.16 5.77 5.56 6.73),

and the scaled exponent matrix
⎛

⎜⎜⎜⎜⎝

x1 x2 x3 x4 1 x2
1 x2

2 x2
4 x1x3 x1x2 x1x2

3∗ −0.887 ∗ ∗ 0.162 ∗ 0.362 ∗ ∗ −0.156 0.52
∗ ∗ −0.799 ∗ 1.25 ∗ ∗ ∗ −0.451 ∗ ∗

−0.92 ∗ −1.02 ∗ 1.26 0.193 ∗ ∗ −0.367 0.239 0.614
∗ ∗ ∗ −3.47 1.73 ∗ ∗ 1.73 ∗ ∗ ∗

⎞

⎟⎟⎟⎟⎠
.

The scaling problem solved with the method ScaleLP (Subsect. 4.1) results in the scaling
factors

loga(xs)
T := (−7 − 7 − 7 − 15)

loga(cs)
T := (6.02 7 6.32 14.6),

and the scaled exponent matrix
⎛

⎜⎜⎜⎜⎝

x1 x2 x3 x4 1 x2
1 x2

2 x2
4 x1x3 x1x2 x1x2

3∗ −0.981 ∗ ∗ 1.02 ∗ −0.683 ∗ ∗ −0.773 0
∗ ∗ 0 ∗ 2.48 ∗ ∗ ∗ −0.175 ∗ ∗

−0.68 ∗ −0.68 ∗ 2.02 −0.09 ∗ ∗ −0.554 −0.472 0
∗ ∗ ∗ −0.408 9.59 ∗ ∗ 0 ∗ ∗ ∗

⎞

⎟⎟⎟⎟⎠
.

The scaling problem solved with the method ScaleIt (Subsect. 4.2) results in the scaling
factors

loga(xs)
T := (−1 0 − 4 − 15)

loga(cs)
T := (−7.3 − 1.82 − 6.21 14.6),

and the scaled exponent matrix
⎛

⎜⎜⎜⎜⎝

x1 x2 x3 x4 1 x2
1 x2

2 x2
4 x1x3 x1x2 x1x2

3∗ −7.3 ∗ ∗ −12.3 ∗ 0 ∗ ∗ −1.09 −1.32
∗ ∗ −5.82 ∗ −6.35 ∗ ∗ ∗ 0 ∗ ∗

−7.21 ∗ −10.2 ∗ −10.5 −0.618 ∗ ∗ −4.08 0 −0.528
∗ ∗ ∗ −0.408 9.59 ∗ ∗ 0 ∗ ∗ ∗

⎞

⎟⎟⎟⎟⎠
.

123

340 J Glob Optim (2008) 42:327–345

All methods seem to produce reasonable results. However, the scaled exponent matrix
produced by Hompack still contains big entries in the quadratic and bilinear part, indicating
a rather non-optimal scaling.

5.3 A linear example

The next example is a 4-dimensional linear system Ax = b, with matrix

A :=

⎛

⎜⎜⎝

1 a4 a2 1
a4 a4 1 a8

a2 1 a8 a10

1 a8 a10 1

⎞

⎟⎟⎠ , b :=

⎛

⎜⎜⎝

1
1
1
1

⎞

⎟⎟⎠ .

The case a = 105 of this matrix was presented in [17] as an example of a difficult to scale
matrix. It was also used in [15] to demonstrate the excellent behavior of their LP-based linear
scaling algorithm. The optimal scaling vectors

cs = (1, a−3, a−4, a−5) and xs = (a−1, a−4, a−5, a−6)T (23)

found in [15] (for a = 105) result in the permuted and scaled matrix

As :=

⎛

⎜⎜⎝

1 a−3 a−8 a−1

a−1 1 a−3 a−6

a−6 a−1 1 a−11

a−3 a−8 a−1 1

⎞

⎟⎟⎠ .

The scaling problem solved with the Hompack does not produce any useful results since
the matrix G is singular (see Subsect. 3.1). If solved with the normal equation and rounding
errors the method results in the same scaling factors as the Morgan algorithm discussed
below.

The scaling problem solved with the method Morgan (Subsect. 3.2) results in the scaling
factors

loga(xs)
T := (7.31 5.06 4.06 4.31)

loga(cs)
T := (−7.19 − 9.19 − 10.2 − 9.69),

and the scaled exponent matrix

⎛

⎜⎜⎜⎜⎝

x1 x2 x3 x4

1.13 1.88 −1.12 −1.87
2.13 −0.125 −5.12 3.13

−0.875 −5.12 1.88 4.13
−2.37 3.38 4.38 −5.37

⎞

⎟⎟⎟⎟⎠
.

The scaling problem solved with the method ScaleLP (Subsect. 4.1) results in the scaling
factors

loga(xs)
T := (−4 − 6 − 8 − 10)

loga(cs)
T := (2 0 0 − 2),

123

J Glob Optim (2008) 42:327–345 341

and the scaled exponent matrix
⎛

⎜⎜⎜⎜⎝

x1 x2 x3 x4

−1 0 −4 −7
0 −2 −8 −2

−2 −6 0 0
−6 0 0 −12

⎞

⎟⎟⎟⎟⎠
.

The scaling problem solved with the method ScaleIt (Subsect. 4.2) results in the scaling
factors

loga(xs)
T := (3 0 0 − 1)

loga(cs)
T := (−4 − 7 − 9 − 10),

and the scaled exponent matrix
⎛

⎜⎜⎜⎜⎝

x1 x2 x3 x4

0 0 −2 −4
0 −3 −7 0

−4 −9 −1 0
−7 −2 0 −11

⎞

⎟⎟⎟⎟⎠
.

To verify which of the scalings are equivalent we can compute the scaling measure defined
by (12). The scaling vectors (23) from [15] and the scaling vectors derived by the methods
ScaleLP and ScaleIt all have the value of −122. This indicates that for this problem the
different methods lead to equivalent scalings.

Incidentally, this shows that, contrary to the statement made in [15, p. 13], A need not
have a unique best scaling when the dominant transversal is unique.

5.4 A nonlinear example

This example is a 3-dimensional quadratic problem, with

ex(A) :=

⎛

⎜⎜⎜⎜⎝

x1 x2 x3 x2
1 x1x2 x1x3 x1x2 x2

2 x2x3 x1x3 x2x3 x2
3

8 4 2 3 8 0 8 6 2 5 1 3
0 5 6 3 0 6 5 0 2 9 7 7
7 6 2 4 9 7 4 5 8 3 3 1
1 5 7 1 6 7 4 2 4 6 7 1

⎞

⎟⎟⎟⎟⎠
.

Because of the symmetrical nature of the powers of the monomials, the method Hompack
(Subsect. 3.1) cannot be applied since the matrix

G :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

12 0 0 0 7 7 7
0 12 0 0 7 7 7
0 0 12 0 7 7 7
0 0 0 12 7 7 7
7 7 7 7 196 196 196
7 7 7 7 196 196 196
7 7 7 7 196 196 196

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

from (4) is singular.

123

342 J Glob Optim (2008) 42:327–345

The scaling problem solved with the method Morgan (Subsect. 3.2) results in the scaling
factors

loga(xs)
T := (−0.0397 − 0.00397 0.21),

loga(cs)
T := (−4.26 − 4.26 − 5.01 − 4.35),

and the scaled exponent matrix
⎛

⎜⎜⎝

x1 x2 x3 x2
1 x1x2 x1x3 x1x2 x2

2 x2x3 x1x3 x2x3 x2
3

3.7 −0.268 −2.05 −1.34 3.69 −4.09 3.69 1.73 −2.06 0.907 −3.06 −0.843
−4.3 0.732 1.95 −1.34 −4.31 1.91 0.692 −4.27 −2.06 4.91 2.94 3.16
1.95 0.982 −2.8 −1.09 3.94 2.16 −1.06 −0.0218 3.19 −1.84 −1.81 −3.59

−3.39 0.649 2.86 −3.43 1.61 2.82 −0.391 −2.36 −0.141 1.82 2.86 −2.93

⎞

⎟⎟⎠ .

The scaling problem solved with the method ScaleLP (Subsect. 4.1) results in the scaling
factors

loga(xs)
T := (−2 0 − 1)

loga(cs)
T := (−6 − 6 − 7 − 6),

and the scaled exponent matrix
⎛

⎜⎜⎜⎜⎝

x1 x2 x3 x2
1 x1x2 x1x3 x1x2 x2

2 x2x3 x1x3 x2x3 x2
3

0 −2 −5 −7 0 −9 0 0 −5 −4 −6 −5
−8 −1 −1 −7 −8 −3 −3 −6 −5 0 0 −1
−2 −1 −6 −7 0 −3 −5 −2 0 −7 −5 −8
−7 −1 0 −9 −2 −2 −4 −4 −3 −3 0 −7

⎞

⎟⎟⎟⎟⎠
.

The scaling problem solved with the method ScaleIt (Subsect. 4.2) results in the scaling
factors

loga(xs)
T := (−1 0 0)

loga(cs)
T := (−7 − 8 − 8 − 7),

and the scaled exponent matrix
⎛

⎜⎜⎜⎜⎝

x1 x2 x3 x2
1 x1x2 x1x3 x1x2 x2

2 x2x3 x1x3 x2x3 x2
3

0 −3 −5 −6 0 −8 0 −1 −5 −3 −6 −4
−9 −3 −2 −7 −9 −3 −4 −8 −6 0 −1 −1
−2 −2 −6 −6 0 −2 −5 −3 0 −6 −5 −7
−7 −2 0 −8 −2 −1 −4 −5 −3 −2 0 −6

⎞

⎟⎟⎟⎟⎠
.

If we have additional bound constraints

x :=
⎛

⎝
[1, 2]
[2, 3]
[7, 10]

⎞

⎠

the first two methods result in the same scaling vectors but the ScaleLP and the method
ScaleIt scaling vectors change to:

loga xs := (
0 0 1

)T

loga cs := (−8 −10 −9 −8
)
.

This is good for optimization problems because the tight bound constraints give us an explicit
knowledge about the variable scaling.

123

J Glob Optim (2008) 42:327–345 343

5.5 A nearly degenerate problem

Our final problem consists of a single constraint

4x2
1 + 4N x1x2 + 12x1x3 − 28x1x4 + (1 + N 2)x2

2 + (6N − 2)x2x3

−(10N + 14)x2x4 + 11x2
3 − 32x3x4 + 75x2

4 + 2x2 + 2N x3 + 26 ≤ 0.

We discuss the case N = 5 × 106. The Hompack scaling algorithm does not yield any scal-
ing factors because to numerical instabilities, but the Morgan algorithm yields seemingly
acceptable scaling factors

loga(xs)
T := (−0.232 − 5.92 − 1.17 − 0.846)

loga(cs)
T := −0.109.

(Of course, neither of these algorithms were originally designed for non-square problems.)
Using the ScaleLP method, we obtain good scaling factors

loga(xs)
T := (6 0 6 5)

loga(cs)
T := −13.3979.

It turns out that the scaling makes an essential difference in a global optimization tech-
nique for box reduction described in [6]. This technique is based on the verification that a
quadratic constraint is strictly convex, and a subsequent enclosure of the ellipsoid describing
the constraint by a box.

In the present example, the convexity verification phase fails due to the poor condition of
the Hessian matrix of the constraint (cond2 A = 1021). Note that the constraint is equivalent
to

(2x1 + N x2 + 3x3 − 7x4)
2 + (x2 − x3 − 5x4 + 1)2

+(x3 + N + 1)2 + (x4 + 5)2 ≤ (N − 1)2

which is manifestly convex.
If we scale the variables according to the results of ScaleLP before applying the box

reduction techniques, strict convexity is verified, and we find the bound constraints

x ∈ ([−146, 1442], [−5108, 5107], [−310−5, 10−12], [−10−2, 10−3])T

for the originally unconstrained problem. (On the other hand, when scaling with the scaling
factors found by the Morgan algorithm, the convexity test still fails. This happens because
the linear part of the matrix scaled by using the Morgan method still contains big entries.)

5.6 Discussion

The numerical examples above show that the older scaling algorithms designed for scaling
polynomial systems may perform poorly when applied to linear systems or to problems with
fewer constraints than variables. Due to some structural problems the method Hompack
using the gradient equation suggested in [21] even fails to obtain a scaling vector. For the
linear example the results of the method Morgan can not be trusted, due to the numerical
instabilities reported by Matlab. Both of our algorithms produce results which are equiv-
alent to the optimal scaling found in [15]. For nonlinear examples the two other algorithms
produce similar results, but both ignore the bound constraints. The alternative method of
Morgan algorithm uses bound information but in a too naive way. Our methods are optimal

123

344 J Glob Optim (2008) 42:327–345

for the linear case. For the nonlinear case each algorithm suits, giving different scalings which
could suit different applications. Computing the number of operations needed to evaluate the
objective functions by the different methods results in

Method Cost of function evaluation

Hompack p(n − 1) + 3n A

Morgan ≤ p(n − 1) + 3n A + 4s
ScaleLP p(n − 1) + (n + m + 1) + 3n A

ScaleIt ≤ 2n + n(m + n + 1)

where n A denotes the non zero entries in A and s := (p
2

)
. Thus, for larger problems only

Hompack, ScaleLP or ScaleIt are suitable, and for very large problems ScaleIt is the
only alternative.

6 Conclusion

In view of the stability problems for Hompack and Morgan, and their breakdown for linear
problems, for nonlinear problems with a symmetric structure, and for problems with fewer
constraints than variables, only ScaleLP or ScaleIt are suitable as general purpose scaling
methods. For very large problems, the higher complexity of ScaleLP makes ScaleIt the
method of choice.

Acknowledgements We thank an anonymous referee whose numerous suggestions markedly improved the
presentation of the paper.

References

1. Benzi, M., Haws, J.C., Tuma, M.: Preconditioning highly indefinite and nonsymmetric matrices. SIAM
J. Sci. Comput. 22, 1333–1353 (2000)

2. Buttrey, S.: The lpSolve package. http://cran.mirroring.de/doc/packages/lpSolve.pdf (2007)
3. Curtis, A.R., Reid, J.K.: On the automatic scaling of matrices for gaussian elimination. IMA J. Appl.

Math. 10(1), 118–124 (1972)
4. Domes, F.: Verified global optimization with Gloptlab. http://www.mat.univie.ac.at/dferi/ICIAM07.pdf

(2007)
5. Domes, F.: GloptLab, a configurable framework for the rigorous global solution of quadratic constraint

satisfaction problems. in preparation (2007–2008)
6. Domes, F., Neumaier, A.: Directed cholesky factorizations and applications. submitted (2008)
7. Duff, I.S., Koster, J.: The design and use of algorithms for permuting large entries to the diagonal of

sparse matrices. SIAM J. Matrix Anal. Appl. 20, 889 (1999)
8. Fan, H.-Y., Lin, W.-W., Van Dooren, P.: Normwise scaling of seond order polynomial matrices. SIAM

J. Matrix Anal. Appl. 26, 252–256. http://www.inma.ucl.ac.be/publi/258602.pdf (2004)
9. Hagemann, M., Schenk, O.: Weighted matchings for the preconditioning of symmetric indefinite linear

systems. SIAM J. Sci. Comp. 28, 403–420. http://www.computational.unibas.ch/cs/scicomp/ (2006)
10. Higham, N.J., Mackey, D.S., Tisseur, F.: The conditioning of linearizations of matrix polynomials. SIAM

J. Matrix Anal. Appl. 28, 1005–1028. http://eprints.ma.man.ac.uk/669/ (2006)
11. Higham, N.J., Mackey, D.S., Tisseur, F., Garvey, S.D.: Scaling, sensitivity and stability in the numerical

solution of quadratic eigenvalue problems. Int. J. Num. Math. Eng. 73, 344–360. http://eprints.ma.man.
ac.uk/997/ (2008)

12. Kim, S., Kojima, M.: Numerical stability of path tracing in polyhedral homotopy continuation methods.
Computing 73, 329–348. http://math.ewha.ac.kr/~skim/Research/B-390.pdf (2004)

13. Meintjes, K., Morgan, P.: Chemical equilibrium systems as numerical test problems. ACM Trans. Math.
Software 16, 143–151 (1990)

123

http://cran.mirroring.de/doc/packages/lpSolve.pdf
http://www.mat.univie.ac.at/dferi/ICIAM07.pdf
http://www.inma.ucl.ac.be/publi/258602.pdf
http://www.computational.unibas.ch/cs/scicomp/
http://eprints.ma.man.ac.uk/669/
http://eprints.ma.man.ac.uk/997/
http://eprints.ma.man.ac.uk/997/
http://math.ewha.ac.kr/~skim/Research/B-390.pdf

J Glob Optim (2008) 42:327–345 345

14. Morgan, A.: Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems.
Prentice-Hall (1987)

15. Olschowka, M., Neumaier, A.: A new pivoting strategy for Gaussian elimination. Linear Algebra
Appl. 240, 131–151 (1996)

16. Parlett, B.N., Landis, T.L.: Methods for scaling to double stochastic form. Linear Algebra Appl. 48,
53–79 (1982)

17. Rice, J.R.: Matrix Computation and Mathematical Software. McGraw-Hill (1981)
18. Schenk, O., Gartner, K.: On fast factorization pivoting methods for sparse symmetric indefinite systems.

Elec. Trans. Num. Anal. 23, 158–179. http://informatik.unibas.ch/personen/schenk_o.html (2006)
19. Schenk, O., Rollin, S., Gupta, A.: The effects of unsymmetric matrix permutations and scalings in semi-

conductor device and circuit simulation. Computer-Aided Des. Integ. Circuits Syst. 23, 400–411. http://
ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1269862. (2004)

20. Verschelde, J., Verlinden, P., Coolsi, R.: Homotopies exploiting newton polytopes for solving sparse
polynomial systems. SIAM J. Numer. Anal. 31, 915–930. http://scitation.aip.org/getpdf/servlet/GetPDF
Servlet?filetype=pdf&id=SJNAAM000031000003000915000001&idtype=cvips&prog=normal. (1994)

21. Watson, L.T., Terry, L.: HOMPACK: a suite of codes for globally convergent homotopy algorithms.
http://deepblue.lib.umich.edu/dspace/bitstream/2027.42/8204/5/ban6930.0001.001.pdf (1985)

123

http://informatik.unibas.ch/personen/schenk_o.html
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1269862
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1269862
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=SJNAAM000031000003000915000001&idtype=cvips&prog=normal
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=SJNAAM000031000003000915000001&idtype=cvips&prog=normal
http://deepblue.lib.umich.edu/dspace/bitstream/2027.42/8204/5/ban6930.0001.001.pdf

	A scaling algorithm for polynomial constraint satisfaction problems
	Abstract
	1 Introduction
	2 Problem specification
	2.1 Notation

	3 Known methods
	3.1 Watson's Hompack algorithm
	3.2 Morgan's algorithm

	4 The new methods
	4.1 A linear programming algorithm
	4.2 An iterative algorithm

	5 Numerical examples
	5.1 A badly scaled system from the literature
	5.2 Reduced version of the same system
	5.3 A linear example
	5.4 A nonlinear example
	5.5 A nearly degenerate problem
	5.6 Discussion

	6 Conclusion
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

